54 research outputs found

    Systematic feature evaluation for gene name recognition

    Get PDF
    In task 1A of the BioCreAtIvE evaluation, systems had to be devised that recognize words and phrases forming gene or protein names in natural language sentences. We approach this problem by building a word classification system based on a sliding window approach with a Support Vector Machine, combined with a pattern-based post-processing for the recognition of phrases. The performance of such a system crucially depends on the type of features chosen for consideration by the classification method, such as pre- or postfixes, character n-grams, patterns of capitalization, or classification of preceding or following words. We present a systematic approach to evaluate the performance of different feature sets based on recursive feature elimination, RFE. Based on a systematic reduction of the number of features used by the system, we can quantify the impact of different feature sets on the results of the word classification problem. This helps us to identify descriptive features, to learn about the structure of the problem, and to design systems that are faster and easier to understand. We observe that the SVM is robust to redundant features. RFE improves the performance by 0.7%, compared to using the complete set of attributes. Moreover, a performance that is only 2.3% below this maximum can be obtained using fewer than 5% of the features

    Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.</p> <p>Results</p> <p>The 'Closest Sense' method assumes that the ontology defines multiple senses of the term. It computes the shortest path of co-occurring terms in the document to one of these senses. The 'Term Cooc' method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology structure. The 'MetaData' approach trains a classifier on metadata. It does not require any ontology, but requires training data, which the other methods do not. To evaluate these approaches we defined a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The 'MetaData' approach performed best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The 'Term Cooc' approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The 'Closest Sense' approach achieves on average 80% success rate.</p> <p>Conclusion</p> <p>Metadata is valuable for disambiguation, but requires high quality training data. Closest Sense requires no training, but a large, consistently modelled ontology, which are two opposing conditions. Term Cooc achieves greater 90% success given a consistently modelled ontology. Overall, the results show that well structured ontologies can play a very important role to improve disambiguation.</p> <p>Availability</p> <p>The three benchmark datasets created for the purpose of disambiguation are available in Additional file <supplr sid="S1">1</supplr>.</p> <suppl id="S1"> <title> <p>Additional file 1</p> </title> <text> <p><b>Benchmark datasets used in the experiments.</b> The three corpora (High quality/Low quantity corpus; Medium quality/Medium quantity corpus; Low quality/High quantity corpus) are given in the form of PubMed identifiers (PMID) for True/False cases for the 7 ambiguous terms examined (GO/MeSH/UMLS identifiers are also given).</p> </text> <file name="1471-2105-10-28-S1.txt"> <p>Click here for file</p> </file> </suppl

    Overview of BioCreative II gene normalization

    Get PDF
    Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Conclusion: Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases

    A Comprehensive Benchmark of Kernel Methods to Extract Protein–Protein Interactions from Literature

    Get PDF
    The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein–protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences. Recently, a new class of such methods has been proposed - convolution kernels that identify PPIs using deep parses of sentences. However, comparing published results of different PPI extraction methods is impossible due to the use of different evaluation corpora, different evaluation metrics, different tuning procedures, etc. In this paper, we study whether the reported performance metrics are robust across different corpora and learning settings and whether the use of deep parsing actually leads to an increase in extraction quality. Our ultimate goal is to identify the one method that performs best in real-life scenarios, where information extraction is performed on unseen text and not on specifically prepared evaluation data. We performed a comprehensive benchmarking of nine different methods for PPI extraction that use convolution kernels on rich linguistic information. Methods were evaluated on five different public corpora using cross-validation, cross-learning, and cross-corpus evaluation. Our study confirms that kernels using dependency trees generally outperform kernels based on syntax trees. However, our study also shows that only the best kernel methods can compete with a simple rule-based approach when the evaluation prevents information leakage between training and test corpora. Our results further reveal that the F-score of many approaches drops significantly if no corpus-specific parameter optimization is applied and that methods reaching a good AUC score often perform much worse in terms of F-score. We conclude that for most kernels no sensible estimation of PPI extraction performance on new text is possible, given the current heterogeneity in evaluation data. Nevertheless, our study shows that three kernels are clearly superior to the other methods

    Mining relations from the biomedical literature

    Get PDF
    Textmining beschäftigt sich mit der automatisierten Annotierung von Texten und der Extraktion einzelner Informationen aus Texten, die dann für die Weiterverarbeitung zur Verfügung stehen. Texte können dabei kurze Zusammenfassungen oder komplette Artikel sein, zum Beispiel Webseiten und wissenschaftliche Artikel, umfassen aber auch textuelle Einträge in sonst strukturierten Datenbanken. Diese Dissertationsschrift bespricht zwei wesentliche Themen des biomedizinischen Textmining: die Extraktion von Zusammenhängen zwischen biologischen Entitäten ---das Hauptaugenmerk liegt dabei auf der Erkennung von Protein-Protein-Interaktionen---, und einen notwendigen Vorverarbeitungsschritt, die Erkennung von Proteinnamen. Diese Schrift beschreibt Ziele, Herausforderungen, sowie typische Herangehensweisen für alle wesentlichen Komponenten des biomedizinischen Textmining. Wir stellen eigene Methoden zur Erkennung von Proteinnamen sowie der Extraktion von Protein-Protein-Interaktionen vor. Zwei eigene Verfahren zur Erkennung von Proteinnamen werden besprochen, eines basierend auf einem Klassifikationsproblem, das andere basierend auf Suche in Wörterbüchern. Für die Extraktion von Interaktionen entwickeln wir eine Methode zur automatischen Annotierung großer Mengen von Text im Bezug auf Relationen; diese Annotationen werden dann zur Mustererkennung verwendet, um anschließend die gefundenen Muster auf neuen Text anwenden zu können. Um Muster zu erkennen, berechnen wir Ähnlichkeiten zwischen zuvor gefundenen Sätzen, die denselben Typ von Relation/Interaktion beschreiben. Diese Ähnlichkeiten speichern wir als sogenannte `consensus patterns''. Wir entwickeln eine Alignmentstrategie, die mehrschichtige Annotationen pro Position im Muster erlaubt. In Versuchen auf bekannten Benchmarks zeigen wir empirisch, dass unser vollautomatisches Verfahren Resultate erzielt, die vergleichbar sind mit existierenden Methoden, welche umfangreiche Eingriffe von Experten voraussetzen.Text mining deals with the automated annotation of texts and the extraction of facts from textual data for subsequent analysis. Such texts range from short articles and abstracts to large documents, for instance web pages and scientific articles, but also include textual descriptions in otherwise structured databases. This thesis focuses on two key problems in biomedical text mining: relationship extraction from biomedical abstracts ---in particular, protein--protein interactions---, and a pre-requisite step, named entity recognition ---again focusing on proteins. This thesis presents goals, challenges, and typical approaches for each of the main building blocks in biomedical text mining. We present out own approaches for named entity recognition of proteins and relationship extraction of protein-protein interactions. For the first, we describe two methods, one set up as a classification task, the other based on dictionary-matching. For relationship extraction, we develop a methodology to automatically annotate large amounts of unlabeled data for relations, and make use of such annotations in a pattern matching strategy. This strategy first extracts similarities between sentences that describe relations, storing them as consensus patterns. We develop a sentence alignment approach that introduces multi-layer alignment, making use of multiple annotations per word. For the task of extracting protein-protein interactions, empirical results show that our methodology performs comparable to existing approaches that require a large amount of human intervention, either for annotation of data or creation of models

    A Statistical Approach to Analyse Positional Dependencies in Protein Domains

    No full text
    Motivation: Protein domains are usually identified by conserved regions in the primary amino acid structure. Protein functions are dependent on the 3-dimensional structure and the biochemical properties of the amino acids. 3-Dimensional structures are stabilized by interactions between amino acids which are not adjacent in the primary structure. To preserve the structure, even if certain residues of the sequence are mutated, similar interactions must be possible. This property should be reflected by dependencies between residues of positions taking part in an interaction. We use a statistical approach to identify such positional dependencies in aligned protein sequences of the death domain family and the homeodomain
    • …
    corecore